Differential Migratory Timing of Western Populations of Wilson’s Warbler (cardellina Pusilla) Revealed by Mitochondrial Dna and Stable Isotopes
نویسندگان
چکیده
—Molecular markers and stable isotopes have provided important insights into the migratory connectivity of small landbirds. Research integrating these two methods has primarily focused on linking breeding and wintering sites, rather than focusing on timing of migratory movement of different breeding populations. We used mitochondrial DNA and isotopic markers to infer the timing of various breeding populations of migrating Wilson’s Warblers (Cardellina pusilla) moving through a migratory stopover site, demonstrating the value of multiple sources of information in estimating the origin of migrants. Using mixed-stock analysis, we found that early spring migrants sampled in southwestern Arizona were dominated by warblers migrating to the West Coast of the contiguous United States, whereas later migrants included a large pulse of birds migrating to Alaska and western Canadian provinces. Stable hydrogen isotope data from individual birds showed the same timing pattern as genetic data. Had we used stable isotopes alone, we would not have been able to infer whether birds later in the migration season were most likely migrating to Alaska or the Interior West, given the large overlap in isotope values between those regions. The lack of mitochondrial group 2, common in the Interior West, in late-season migrants strongly suggests that these birds were migrating to breeding areas in Alaska or other northern regions. Studies that reveal the timing of migration of different breeding populations through stopover sites lay the foundation for more in-depth examination of seasonal interactions between migration and the stationary phases of the annual cycle. Received 18 June 2013, accepted 13 September 2013.
منابع مشابه
Adcyap1 polymorphism covaries with breeding latitude in a Nearctic migratory songbird, the Wilson's warbler (Cardellina pusilla)
Understanding the genetic background of complex behavioral traits, showing multigenic control and extensive environmental effects, is a challenging task. Among such traits, migration is known to show a large additive genetic component. Yet, the identification of specific genes or gene regions explaining phenotypic variance in migratory behavior has received less attention. Migration ultimately ...
متن کاملPhylogeographical approaches to assessing demographic connectivity between breeding and overwintering regions in a Nearctic-Neotropical warbler (Wilsonia pusilla).
We characterized the pattern and magnitude of phylogeographical variation among breeding populations of a long-distance migratory bird, the Wilson's warbler (Wilsonia pusilla), and used this information to assess the utility of mtDNA markers for assaying demographic connectivity between breeding and overwintering regions. We found a complex pattern of population differentiation in mitochondrial...
متن کاملMapping migration in a songbird using high-resolution genetic markers.
Neotropic migratory birds are declining across the Western Hemisphere, but conservation efforts have been hampered by the inability to assess where migrants are most limited-the breeding grounds, migratory stopover sites or wintering areas. A major challenge has been the lack of an efficient, reliable and broadly applicable method for measuring the strength of migratory connections between popu...
متن کاملMitochondrial DNA variation, genetic structure and demographic history of Iranian populations
In order to survey the evolutionary history and impact of historical events on the genetic structure of Iranian people, the HV2 region of 141 mtDNA sequences related to six Iranian populations were analyzed. Slight and non-significant FST distances among the Central-western Persian speaking populations of Iran testify to the common origin of these populations from one proto-population. Mismatch...
متن کاملMigration, mitochondria, and the yellow-rumped warbler.
Discordance between mitochondrial and nuclear DNA has been noted in many systems. Asymmetric introgression of mitochondria is a common cause of such discordances, although in most cases the drivers of introgression are unknown. In the yellow-rumped warbler, evidence suggests that mtDNA from the eastern, myrtle warbler, has introgressed across much of the range of the western form, the Audubon's...
متن کامل